

Außeninstitut der Rhein-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal

1

# Bruchmechanik des Risswachstums in Bauteilen infolge Ermüdung und anderer Beanspruchungen

M. Prodan, Winterthur (CH)

### Kurzfassung

Berechnungen unter Verwendung von Näherungsmethoden/Fehler-Bewertungsmodellen der Bruchmechanik werden präsentiert, zum Teil mit dazugehörigen Parallelmessungen an Bruchmechanikproben. Als Modell wurde hauptsächlich der halbelliptische Oberflächenriss benutzt, der in bruchmechanischen Bewertungen beinahe überall und immer vorkommt, wenn die Sicherheit eines Maschinenelementes oder Bauteils gegen Sprödbruch, Ermüdung, Zähbruch oder Kriechrisswachstum beurteilt werden muss.

Als aktuelle Anwendungsbeispiele werden Schadenfall-Abklärungen und Vorab-Sicherheitsabschätzungen gezeigt, z.B. Spannvorrichtung, Papierwalze, Schiffssteuerwelle und Behälter-Stutzen-Eckriss.

## 1. Modellierung rissbehafteter Bauteile

Die Praxisrelevanz der Modelle bzw. der Modellierung sei speziell betont. Modelle sind zu benutzen, wenn sie die Aussagefähigkeit (Uebertragbarkeit der Resultate) auf das komplizierter geformte/beanspruchte Bauteil gewährleisten. Von der Kostenseite her betrachtet, sind aufwendige FE-Berechnungen und kostspielige Experimente eher für ein breit anwendbares Objekt wie eben ein Modell machbar, kaum jedoch für einen einzelnen Maschinenteil. Ausnahmen bilden einzig die sehr wichtigen, sicherheitsrelevanten Maschinenteile. Zudem dürfen die verwendeten Analogien "Modell -Bauteil" keine Vergewaltigung der Realität bewirken.



Fig. 1: Kreisförmiger Riss an der Innenoberfläche eines langen Hohlzylinders unter Zugbelastung.



Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal

2

Für die Berechnung des Spannungsintensitätsfaktors stehen für Fig. 1 nachstehende Gleichungen zur Verfügung.

$$\sigma_{n} = \frac{F_{z}}{\pi [R_{a}^{2} - (R_{i} + a)^{2}]}$$
(1)  
$$K_{z} = \sigma_{n} \sqrt{\pi a} \cdot f_{zz}$$
(2)

$$K_{II} = K_{III} = 0$$
 (3)

Figur 1 zeigt die Bedeutung der einzelnen Bezeichnungen. Figur 2 enthält die graphische Darstellung der Korrekturfunktion  $f_{Iz}$  für Gleichung (2).



Fig. 2: Graphische Darstellung der Korrekturfunktion  $f_{xz}$  für Gleichung (2).



Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal

Seite

|                                                                                                                                                                           | 2.                                  | <u>Berechnungen mit Zahlenwerten für einen konkreten Fall (Spann-</u><br>vorrichtung):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                           |                                     | Maximale Kolbenvorspannkraft $F_z$ = 880 647 kp = 8639 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                           |                                     | Backen-Querschnitt $A = 13 849 \text{ mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                           |                                     | gemäss Werkangaben + Zeichnung.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                           |                                     | Mit Gleichung (1) berechnen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                           | σ'n                                 | $=\frac{F_z}{A} = \frac{8639 \cdot 10^3}{13848} = \frac{N}{mm^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                           |                                     | Weiterhin: $2R_a = 205$ mm<br>$2R_i = 143,5$ mm<br>a = 4,38 mm<br>(Gewinde)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                           |                                     | Damit berechnen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                                                                                                           |                                     | $s = R_a - R_i = 30,75 \text{ mm}$ $\frac{s}{Ra} = 0,3 \frac{a}{-1} = 0,14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                           | Aus Fig. 2 ablesen: $f_{rz} = 0,99$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Mit Gleichung (2) berechnen:<br>$K_x = \sigma_n \sqrt{\pi a} \cdot f_{xz} = 624 \cdot \sqrt{\pi \cdot 4.38} \cdot 0,99 = 2292 \text{ Nmm}^{-3/2} = 72 \text{ MNm}^{-3/2}$ |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                           |                                     | $K_{rc} = 1420 \text{ Nmm}^{-3/2} = 45 \text{ MNm}^{-3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                           |                                     | und bei weiteren intakten Stücken:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                           |                                     | $K_{r_G} = 1970 \text{ Nmm}^{-3/2} = 62 \text{ MNm}^{-3/2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Der Werkstoff, aus welchem die Spannvorrichtungen hergestellt<br>wurden, war                                                                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                           |                                     | X 38 CrMoV 51, W-Nr. 1.2343, vergütet auf $R_m = 1300-1450 \text{ N/mm}^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                           |                                     | Den Anstoss zu den hier als Beispiel gezeigten Abklärungen gab<br>eigentlich ein Stück Spannvorrichtung aus einer kleinen Serie,<br>welche bei der Spannprobe (also noch vor der ersten Inbetrieb-<br>nahme) knapp vor Erreichen des Probedrucks brach. Der Probedruck<br>wäre geringfügig höher als der normale Betriebsdruck gewesen. Das<br>Modell war im gegebenen Fall insofern konservativ, da bei seiner<br>Anwendung bereits das Gewinde mit Krümmungsradius R = 0,3 mm<br>durch einen Riss modelliert wurde. Andererseits verhielt sich das<br>Material X 38 CrMo V 51 im gegebenen wärmebehandelten Zustand<br>sehr spröd, so dass bereits bei einer geringen Fehlstelle mit ei-<br>nem verformungslosen Sprödbruch ohne vorangehende, warnende An-<br>zeichen zu rechnen war. |  |  |  |

Technische Akademie Wuppertal



Außeninstitut der Rhein-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal Seite

4

Der Spannungsintensitätsfaktor betrug 2290 Nmm<sup>-3/2</sup> (72 MNm<sup>-3/2</sup>), einen höheren Wert als die Bruchzähigkeit. Durch den Konservatismus, bei welchem das Gewinde mit Krümmungsradius R = 0,3 mm durch einen Riss modelliert wurde, entstand eine gewisse Festigkeitsreserve. Diese Festigkeitsreserve lässt sich aber weder ohne weiteres quantifizieren, noch kann man sich beim vorliegenden spröden Materialverhalten allzu sehr auf sie verlassen.

Die bruchmechanische Untersuchung führte mit diesen Resultaten zur Empfehlung, alle Spannvorrichtungen, die mit der gebrochenen wärmebehandelt wurden, aus Sicherheitsgründen vorerst von der Verwendung bzw. dem vorgesehenen Gebrauch auszuschliessen.

Als qualitätsverbessernde Massnahme und zwecks Vermeidung weiterer Schadenfälle wurde eine Erhöhung der Bruchzähigkeit durch eine neue, besser geeignete Wärmebehandlung vorgeschlagen, und an den intakten Stücken später mit Erfolg durchgeführt.

#### 3. Das Fehler-Beurteilungsmodell "Scheibe mit Oberflächenriss"

Auch hier stellt sich die Aufgabe, eine bruchmechanische Analyse an einem bauteilähnlichen Modellfall durchzuführen (Fig. 3). Die Bruchmechanik ermöglicht es, Parameter, wie z.B. den bereits erwähnten Spannungsintensitätsfaktor K<sub>x</sub> oder das sogenannte J-Integral, zur Charakterisierung des Belastungszustandes von Rissen zu berechnen. Diese werden bei Nachweis der Bruchsicherheit durch bruchmechanische Analysen benützt. Hierzu gibt es heute Rechnerprogramme, welche die Berechnung von  $K_x$  und J für zahlreiche Risskonfigurationen und Lastfälle erlauben.

Wie dies geschieht, sei anhand von Fig. 3 angedeutet. Für diese Konfiguration kann der Spannungsintensitätsfaktor K<sub>x</sub> numerisch berechnet werden:



Fig. 3: Halbelliptischer Oberflächenriss in einer auf Zug beanspruchten Scheibe.

Die Symbole von (4) und (5) sind mit Hilfe von Fig. 3 zu entschlüsseln. Werte der Korrekturfunktion F (a/c,  $\phi$ , a/t) sind nach dreidimensionalen, linear-elastischen FE-Berechnungen von Raju und Newman in Tabelle 1 enthalten. Tabelle 2 zeigt einige Werte von  $\phi$ , einem vollständigen elliptischen Integral 2. Gattung, nach Gleichung (5).  $\phi$  kann mit Hilfe der Bartky-Transformation iterativ ermittelt werden. Wir berechneten  $\phi$  mit dieser Iteration und schrieben ein kleines Fortranprogramm  $\phi$ TABLE, welches mit drei Iterationsschritten bereits sehr genaue Werte für  $\phi$  ergab.

Für  $\Phi$  bzw. den Rissformparameter Q, welcher mit  $\Phi$  sehr verwandt ist (enthält aber eine pauschale Plastizitätskorrektur), ist in der einschlägigen Literatur noch eine Diagrammdarstellung allgemein verbreitet: Q in Funktion von a/2c und  $\sigma/\sigma_{o,2}$ , eine Kurvenschar. Diese wird manchenorts auch "graphische Lösung" genannt. (Siehe noch Gleichung (8) in Abschnitt 7.)



Fig. 3: Halbelliptischer Oberflächenriss in einer auf Zug beanspruchten Scheibe.

Die Symbole von (4) und (5) sind mit Hilfe von Fig. 3 zu entschlüsseln. Werte der Korrekturfunktion F (a/c,  $\phi$ , a/t) sind nach dreidimensionalen, linear-elastischen FE-Berechnungen von Raju und Newman in Tabelle 1 enthalten. Tabelle 2 zeigt einige Werte von  $\phi$ , einem vollständigen elliptischen Integral 2. Gattung, nach Gleichung (5).  $\phi$  kann mit Hilfe der Bartky-Transformation iterativ ermittelt werden. Wir berechneten  $\phi$  mit dieser Iteration und schrieben ein kleines Fortranprogramm  $\phi$ TABLE, welches mit drei Iterationsschritten bereits sehr genaue Werte für  $\phi$  ergab.

Für  $\Phi$  bzw. den Rissformparameter Q, welcher mit  $\Phi$  sehr verwandt ist (enthält aber eine pauschale Plastizitätskorrektur), ist in der einschlägigen Literatur noch eine Diagrammdarstellung allgemein verbreitet: Q in Funktion von a/2c und  $\sigma/\sigma_{o,2}$ , eine Kurvenschar. Diese wird manchenorts auch "graphische Lösung" genannt. (Siehe noch Gleichung (8) in Abschnitt 7.)

Technische Akademie Wuppertal



Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal Seite

6

# Tabelle 1: Werte der Korrekturfunktion F (a/c, $\phi$ , a/t) nach den dreidimensionalen FE-Berechnungen von Raju und Newman für den Oberflächenriss in einer zugbeanspruchten Scheibe.

|      |      |       |       |       |       | φ (°) |       |       |       |         |
|------|------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| a/c  | a/t  | 0,00  | 11,25 | 22,50 | 33,75 | 45,00 | 56,25 | 67,50 | 78,75 | 90,00   |
| 0,20 | 0,20 | 0,617 | 0,650 | 0,754 | 0,882 | 0,990 | 1,072 | 1.128 | 1.161 | 1.173   |
| 0,40 | 0,20 | 0,767 | 0,781 | 0,842 | 0,923 | 0,998 | 1.058 | 1,103 | 1,129 | 1,138   |
| 0,60 | 0,20 | 0,916 | 0,919 | 0,942 | 0,982 | 1,024 | 1,059 | 1.087 | 1.104 | 1110    |
| 1,00 | 0,20 | 1,174 | 1,145 | 1,105 | 1,082 | 1,067 | 1.058 | 1.053 | 1.050 | 1049    |
| 2,00 | 0,20 | 0,821 | 0,749 | 0,740 | 0,692 | 0,646 | 0.599 | 0.552 | 0.512 | 0 495   |
| 0,20 | 0,40 | 0,724 | 0,775 | 0,883 | 1,009 | 1,122 | 1.222 | 1,297 | 1344  | 1359    |
| 0,40 | 0,40 | 0,896 | 0,902 | 0,946 | 1,010 | 1.075 | 1,136 | 1,184 | 1214  | 1,000   |
| 0,60 | 0,40 | 1,015 | 1.004 | 1.009 | 1.033 | 1,062 | 1.093 | 1121  | 1139  | 1145    |
| 1,00 | 0,40 | 1,229 | 1,206 | 1,157 | 1,126 | 1,104 | 1.088 | 1.075 | 1,100 | 1,140   |
| 2,00 | 0,40 | 0.848 | 0.818 | 0,759 | 0,708 | 0.659 | 0.609 | 0.560 | 0.519 | 0.501   |
| 0,20 | 0,60 | 0.899 | 0.953 | 1.080 | 1.237 | 1.384 | 1,501 | 1581  | 1627  | 1642    |
| 0,40 | 0.60 | 1.080 | 1.075 | 1,113 | 1.179 | 1,247 | 1302  | 1341  | 1,363 | 1 370   |
| 0,60 | 0,60 | 1.172 | 1.149 | 1.142 | 1.160 | 1.182 | 1,202 | 1218  | 1,000 | 1,370   |
| 1,00 | 0,60 | 1.355 | 1.321 | 1.256 | 1.214 | 1,181 | 1,153 | 1129  | 1113  | 1,200   |
| 2,00 | 0,60 | 0.866 | 0.833 | 0.771 | 0.716 | 0.664 | 0.610 | 0.560 | 0.519 | 0.501   |
| 0,20 | 0.80 | 1,190 | 1.217 | 1.345 | 1.504 | 1.657 | 1759  | 1824  | 1846  | 1.651   |
| 0,40 | 0,80 | 1.318 | 1.285 | 1.297 | 1.327 | 1.374 | 1408  | 1437  | 1446  | 1 4 4 7 |
| 0,60 | 0.80 | 1.353 | 1.304 | 1.265 | 1.240 | 1,243 | 1245  | 1260  | 1264  | 1264    |
| 1.00 | 0.80 | 1.464 | 1,410 | 1.314 | 1.234 | 1193  | 1150  | 1134  | 1118  | 1112    |
| 2,00 | 0.80 | 0.876 | 0.839 | 0.775 | 0.717 | 0.661 | 0,607 | 0.554 | 0.513 | 0.496   |

Tabelle 2: Einige berechnete  $\Phi$ -Werte mit Programm  $\Phi$ TABLE.

|    | 0.10 | 0.20 | a/2c<br>0.25 | 0.30 | 0.40 |
|----|------|------|--------------|------|------|
| Φ: | 1.05 | 1.15 | 1.21         | 1.28 | 1.42 |

Unter Scheibe wird beim Modell von Fig. 3 ein plattenähnlicher Körper verstanden, der durch Kräfte senkrecht zur Dicke beansprucht wird. Selbstverständlich liegen auch ähnliche Resultate in der einschlägigen Literatur bzw. in  $K_x$ -Faktor-Handbüchern für biegebeanspruchte Platten mit Oberflächenriss und andere typische Risskonfigurationen des Maschinenbaus vor.

Die Ergebnisse können für folgende Aufgaben eingesetzt werden: Bestimmung kritischer Rissgrössen; Berechnung kritischer Belastungen; Ermittlung der erforderlichen Zähigkeiten; Voraussagen des unterkritischen Risswachstums (z.B. infolge Ermüdung) und Aufstellung von Prüfanordnungen.



Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal

Technische Akademie Wuppertal

7

# 4. Berechnungen mit Hilfe des vorher vorgestellten Modells

Als weitere Beispiele dienen – illustriert in Fig. 4. – Berechnungen kritischer Rissgrössen mit  $K_{re}$  = 4000 Nmm<sup>-3/2</sup> bei einer Nennspannung von 350 N/mm<sup>2</sup> normal zur Rissebene und einer Wanddicke von 100 mm. Mit der linear-elastischen Bruchmechanik ergibt sich als Quotient der kritischen Grösse zur auffindbaren Grösse ein Sicherheitsfaktor von rund 4. Dies entspricht einem Sicherheitsfaktor von 2, ausgedrückt mit der Nennspannung oder der Zähigkeit, und wird für den vorliegenden Zweck als genügend erachtet. Der Anwendungsfall war eine Komponente einer chemischen Anlage.





Fig. 4: Zwei Beispiele für kritische und auffindbare Rissgrössen.

#### 5. Risswachstum infolge Ermüdung

Das Risswachstum im Gebiet der Zeitfestigkeit versucht man in der Praxis bevorzugt mit der Paris-Gleichung zu berechnen:

$$\frac{da}{dN} = C \cdot \Delta K^{m}$$
 (6)

a = Rissabmessung N = Lastwechselzahl ∆K = zyklischer Spannungsintensitätsfaktor C,m = werkstoffspezifische Parameter.



Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal

8

Für die Bestimmung von C und m dienen in der Regel Versuche an Kompaktzugproben (CT, eindimensionales Risswachstum). Bei der allgemein verbreiteten doppelt-logarithmischen Darstellung  $\log (da/dN) = f(\log \Delta K)$  wirken die Streuungen der Versuchspunkte kleiner als bei einer linearen Darstellung. Für  $\Delta K$  gibt es einen Schwellwert  $\Delta K_{\circ}$  oder  $\Delta K_{tn}$  (threshold, genannt auch als "bruchmechanische Dauerfestigkeit"), unterhalb welchem kein Risswachstum stattfindet. Das Gesetz für Risswachstum ist demnach:  $da/dN = C \cdot \Lambda K^m$  für  $\Lambda K > \Lambda K_o$  (Zeitfestigkeit, vgl. Gleichung (6)) und für  $\Lambda K < \Lambda K_{\odot}$  (Dauerfestigkeits-Gebiet). da/dN = 0Zu der sogenannten Paris-Gleichung sei angemerkt, dass darin der Exponent m dimensionslos ist, zum Werkstoffparameter C aber eine Einheit gehört und zwar  $\begin{pmatrix} 3m \\ -2 \end{pmatrix}$  +1 Längeneinhei Krafteinheit<sup>m</sup> Für den Stahl St.E. 43 (BH 43 W) gilt zum Beispiel:  $C = 2, 2 \cdot 10^{-13} \frac{mm^{5.5}}{mm^{3}}$  und m = 3. Fig. 5 zeigt, wie Gleichung (6) auf halbelliptische Oberflächenrisse (mehrdimensionales Risswachstum) anzuwenden ist.  $\frac{da}{da} = f(\Delta K_A)$ dl(9)  $= f \Delta K(\Psi)$ Α α dc = f(∆K<sub>B</sub>) dN С B Fig. 5: Annahme für das Ermüdungswachstum von halbelliptischen Oberflächenrissen im isotropen Werkstoff (Risswiderstand nicht ortsabhängig).



Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal Seite

# 6. Berechnungen und Experimente zum Ermüdungsrisswachstum

Fig. 6 zeigt eine Reihe aufgrund der bisher besprochenen ermittelter **I**K-Werte und sonstige Parameter für Scheiben (auf englisch: plate) und Kompaktzugproben (CT). Zur experimentellen Ueberprü-fung der Rechnung und einiger, bei den Anwendungen gemachten Annahmen (z.B. Fig. 5) wurden parallele Versuche an Scheiben und CT-Proben durchgeführt und ausgewertet.



a [mm] for the plate specimen

Fig. 6:  $\Delta K$ -Werte von wachsenden Rissen in Scheiben ( $\phi = \pi/2$ , (90°), ermittelt nach Raju und Newman, Gleichung (4)) und in entsprechenden CT-Proben (ASTM E 399)

Bei den Scheibenversuchen wurde eine annähernd reine Zugschwellbeanspruchung zwischen den Grenzen 50 und 800 kN aufgebracht. Als Werkstoff diente der Feinkornbaustahl BH 43 W (St.E.43).

#### Technische Akademie Wuppertal

Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal

Tabelle 3: Zahlenwerte zur Fig. 6

a-a

а

| _ [ mm ] | CT-Probe | ΔΚ     | [ Nmm <sup>-3</sup> / | <sup>2</sup> ] |
|----------|----------|--------|-----------------------|----------------|
| [ mm ]   | Scheibe  | Scheit | pe CT-                | -Probe         |
|          | Δ        | 751    | 2                     | 707            |
|          | 6        | 833    | -<br>-                | 797<br>857     |
|          | 8        | 898    | 3                     | 919            |
|          | 10       | 982    | 2                     | 983            |
| ,        | 12       | 1079   | 3                     | 1050           |
| ,        | 14       | 1174   | f ,                   | 1120           |
| ,        | 16       | 1254   | 1                     | 1195           |
| ,        | 18       | 1304   | 1                     | 1275           |
| 2        | 20       | 1308   | 3                     | 1362           |

15

L R Ø

 $\eta$  bedeutet für die CT-Probe Kraft/Dicke:  $\eta = \Delta F/t$ .

Figur 7 gibt den Rissfortschritt von vier Scheiben- und drei CT-Proben-Versuchen an, deren Versuchsparameter gemäss Fig. 6 bestimmt wurden.

Figur 8 zeigt eine Bruchfläche von einem Scheibenversuch. Wie daraus zu ersehen ist, war der Querschnitt der Scheibe 150 mm x 20 mm.

Der Wahl der Scheibenlänge von 800 mm waren spannungsoptische Voruntersuchungen und zweidimensionale Berechnungen mit finiten Elementen vorangegangen. Dabei ergab sich, dass zwischen den Krafteinleitungsstellen an den Enden und der Singularität beim Riss genügend ausgedehnte ungestörte Gebiete vorhanden waren, die die Annahme eines einachsigen Spannungszustandes im Sinne des Prinzips von Saint-Venant rechtfertigten.

Die Scheiben wurden für die experimentellen Untersuchungen mit diversen Detektoren, wie Risswachstumsfolie, Dehnmessstreifen, Rissdetektor, usw. instrumentiert.

10



Technische Akademie Wuppertal



Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal Seite

12

| 14    | Fig. 8: Bruchfläche einer Scheibe. Nach dem<br>Ermüdungsversuch wurde die Scheibe im<br>Rissquerschnitt beidseitig je ca. 50 mm ein-<br>gesägt, um den statischen Restbruch möglichst<br>klein zu halten.                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 13 | Die Experimente können – in einen breiten Zu-<br>sammenhang gestellt – auch als eine Verifika-<br>tion der Raju & Newmanschen Rechenergebnisse<br>angesehen werden. Aufgrund dieser Ueberlegun-<br>gen lassen sich unsere Ergebnisse mit denen<br>eines am IWM Freiburg i. Br. vor Jahren in- |
|       | tensiv verfolgten Forschungvorhabens verglei-<br>chen. Am IWM wurde seinerzeit versucht, aus<br>der Vermessung des Wachstums nicht-durchge-<br>hender Oberflächenrisse auf dem Umweg über<br>Risswachstums-Gleichungen die K-Verteilung<br>entlang der Rissfront zu bestimmen. Die Re-        |
|       | sultate des IWM-Vorhabens und auch unsere Re-<br>sultate schwächten allerdings diese Erwartun-<br>gen etwas ab. Ein Vorhaben bei uns heute,<br>welches ebenfalls als sehr schwierig er-<br>scheint und eine Herausforderung ist, befasst<br>sich mit dem elasto-plastischen Parameter I-      |
|       | Integral und dem daraus weiterentwickelten C*<br>(für das <u>zeitabhängige</u> Kriechrisswachstum be-<br>sonders für Hochtemperaturanwendungen) für<br>halbelliptische Oberflächenrisse.                                                                                                      |
| ω     | 7. Elasto-plastische Bewertung mit J-Integral                                                                                                                                                                                                                                                 |
|       | Ein bewährter elasto-plastischer Bruchpa-<br>rameter ist das sogenannte J-Integral nach<br>der Definitionsgleichung (7):                                                                                                                                                                      |
| 4     | $J = \oint (Wdy - \vec{T} \cdot \frac{\delta \vec{u}}{\delta x} ds) $ (7)                                                                                                                                                                                                                     |
| ·     | $\Gamma$<br>Dabei ist W die elastische Energiedichte                                                                                                                                                                                                                                          |
|       | <pre>w = ) O<sub>i</sub>, dE<sub>i</sub>, T und u sind Spannungs-<br/>o<br/>und Verschiebungsvektoren auf dem Integra-<br/>tionsweg, ds ist ein Wegelement, usw.,<br/>vgl. Fig. 9.</pre>                                                                                                      |
|       |                                                                                                                                                                                                                                                                                               |



Technische Akademie Wuppertal

17

W

Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal Seite

14



Technische Akademie Wuppertal



Außeninstitut der Rhein.-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal

15

Man wende Fig. 10 auf die Beispiele von Abschn. 4 (Fig. 4) - nunmehr elasto-plastisches Bruchverhalten vorausgesetzt - an, und diskutiere die numerischen Ergebnisse.  $J_{\rm rc}$ -Werte werden nach der amerikanischen Norm ASTM E 813 und neulich auch nach einer europäischen EGF-Richtlinie bestimmt. Solche Werte liegen bereits für eine Reihe von Werkstoffen in katalogisierter Form vor.

Neuere Bewertungsvorgehen mit dem J-Integral greifen jedoch nicht mehr auf graphische Darstellungen wie z.B. Fig. 10 zurück. Sie sind vielmehr Bestandteile benützerfreundlicher Computer-Software-Pakete, adaptiert auf PC oder Main Frame.

#### 8. Das Kriechrisswachstum und sein Parameter C\*

Wir wollen uns in diesem Abschnitt auf die Definition, d.h. die Vorstellung des Parameters C\* beschränken:

$$C^{\star} = \oint (W^{\star} dy - T_{\pm} \frac{\delta \dot{u}_{\pm}}{\delta x} ds)$$
(10)

Vergleicht man Gleichung (10) mit Gleichung (7), so lässt sich eine Analogie zwischen C<sup>\*</sup> und J feststellen. Unterschiede sind nur, dass in C<sup>\*</sup> anstelle von u deren Ableitung nach der Zeit u vorkommt, sowie W<sup>\*</sup> im Gegensatz zu W nicht  $\varepsilon$  sondern deren Ableitung  $\dot{\varepsilon}$  enthält:

$$W^* = \int_{0}^{c_{mn}} \sigma_{ij} d\dot{\varepsilon}_{ij}.$$

Dr.-Ing. M. Prodan

Sulzer, Winterthur, CH

Einige Gedanken zur Anwendung von C<sup>\*</sup>: Experimentelle C<sup>\*</sup>-Ergebnisse (und solche bietet die bruchmechanische Materialprüfung heute in einer ansehnlichen Anzahl an) haben nur einen Sinn, wenn es gelingt, sie auf Bauteile zu übertragen. Hauptaufgabe ist dabei die Ermittlung des Parameters C<sup>\*</sup> für das Bauteil. Sie ist nur mit recht groben Annahmen machbar und numerisch sehr heikel. Wenn man nicht einen sehr grossen Aufwand treiben kann, ist man zur Zeit noch auf wenige einfache praktische Anwendungsfälle beschränkt.

Anmerkung: K und J ohne Index beziehen sich in diesem Aufsatz auf Beanspruchungsmodus I, sind also gleichbedeutend mit  $K_x$  und  $J_x$ .



Außeninstitut der Rhein-Westf. Technischen Hochschule Aachen Kontaktstudien-Institut der Bergischen Universität-GH Wuppertal

16

Schlussbemerkungen

Im wesentlichen behandelt der vorliegende Beitrag Fragen der Uebertragbarkeit von Versuchsergebnissen auf Bauteile und bedient sich dabei bekannter Bruchmechanikkonzepte.

Formeln der Bruchmechanik und numerische Vorgehensweisen der Strukturmechanik wurden zur Auswertung einiger Beispiele herangezogen. Ein Teil der vorne in der Kurzfassung genannten Anwendungsbeispiele wurde im Script parallel zur Methodik erörtert, auf den Rest wird im mündlichen Vortrag hingewiesen. Schliesslich ist es Sache des jeweiligen Anwenders, sich Gedanken über den eigenen Modellfall und über das jeweilige Anwendungsproblem zu machen. Wenn dieser Vortrag einige Anhaltspunkte und Hilfen zur Selbsthilfe geboten hat, so hat er seinen Zweck vollauf erfüllt.

Trotz des Vielerleis, das in diesem Aufsatz behandelt wurde, sollte dieser recht homogen wirken. Das Gemeinsame an allen Beispielen ist nämlich, dass sie die Integration bruchmechanischer Methoden in den Zähigkeits- und Festigkeitsnachweis beschreiben.

#### Empfohlene Literatur

- L. Hodulak und M. Schütze: Rechnerprogramm für PC zum Nachweis der Tolerierbarkeit von Fehlern für Komponenten des chemischen Apparatebaus. Mat.-wiss. u. Werkstofftech. 20, S. 236-240, 1989.
- M. Prodan: Spezifische Berechnungen und Experimente mit dem Fehler-Beurteilungsmodell "Scheibe mit Oberflächenriss". VDI Berichte Nr. 679, VDI-Verlag, Düsseldorf, S. 173-184, 1988.
- W.G. Reuter, J.H. Underwood and J.C. Newman (Editors): Surface Crack Growth: Models, Experiments and Structures. ASTM STP 1060, Philadelphia, 1990. (Enthält u.a. einen Beitrag von M. Prodan und J.C. Radon).
- I.S. Raju & J.C. Newman: Stress intensity factors for a wide range of semi-elliptical surface cracks in finite thickness plates. J. Engineering Fracture Mechanics, <u>11</u>, S. 817-829, 1979.
- E. Sommer: Bruchmechanische Bewertung von Oberflächenrissen, Berlin, Heidelberg, New York, Tokyo: Springer, 1984 (Werkstoff-Forschung und -Technik, Bd. 1).
- P.K. Liaw et al.: Estimating remaining life of elevated-temperature steam pipes: fracture mechanics analyses. J. Engineering Fracture Mechanics, 32, S. 709-722, 1989.